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resource, reminiscent of the 1984 Cyc project, still persists in Al. Despite the
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able sources of knowledge remain a critical deficiency in Al infrastructure. Large
language models struggle due to knowledge gaps; robotic planning lacks nec-
essary world knowledge; and the detection of factually false information relies
heavily on human expertise. What kind of knowledge resource is most needed
in Al today? How can modern technology shape its development and evalua-
tion? A recent AAAI workshop gathered over 50 researchers to explore these
questions. This paper synthesizes our findings and outlines a community-driven
vision for a new knowledge infrastructure. In addition to leveraging contem-
porary advances in knowledge representation and reasoning, one promising
idea is to build an open engineering framework to exploit knowledge mod-
ules effectively within the context of practical applications. Such a framework
should include sets of conventions and social structures that are adopted by
contributors.
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INTRODUCTION

The Cyc project, started in 1984, created the first
large-scale database of commonsense knowledge.
The initiative continues to this day with its aim to
provide a comprehensive ontology and knowledge base
of commonsense knowledge to enable human-like rea-
soning for artificial intelligence (AI) systems. In the
concluding paragraph of his Communications of the
Association of Computing Machinery (CACM) 1995
article A Large-Scale Investment in Knowledge Infrastruc-
ture (Lenat 1995), Cyc’s founder Douglas B. Lenat wrote:

Is Cyc necessary? How far would a user
get with something simpler than Cyc but
that lacks everyday commonsense knowl-
edge? Nobody knows; the question will be
settled empirically. Our guess is most of these
applications will eventually tap the synergy in
a suite of sources (including neural nets and
decision theory), one of which will be Cyc.

Although 30 years have passed since the above article
was written, Al research community has not conclu-
sively settled (Brachman and Levesque 2022) the ques-
tion “How far would a user get with something simpler
than Cyc but that lacks everyday commonsense knowl-
edge?” However, it is clear that significant strides have
been made in addressing many of the tasks that were
original Cyc use cases, including information retrieval,
semi-automatically linking multiple heterogeneous exter-
nal information sources, spelling and grammar correction,
machine translation, natural language understanding, and
speech understanding. Much of this progress has been
facilitated by rapid, profound, and synergistic advance-
ments in neural networks, automated agents, and knowl-
edge graphs (Chaudhri et al. 2022). The increasing impor-
tance of knowledge graphs is in line with Lenat’s early
vision for Cyc, as he presented in 1985 (Lenat et al. 1985).

Knowledge graphs that have had commercial impact,
for example, Google’s knowledge graph (Singhal 2012),
have primarily focused on capturing relationships among
real-world entities and have sidestepped the challenge of
capturing everyday commonsense knowledge. Likewise,
even though large language models (LLMs) perform very
well on tasks that require knowledge about the world, that
knowledge is most often implicit. Furthermore, it has been
difficult to make formal guarantees about how and when
LLMs leverage this implicit knowledge (Rossi 2025).

The lack of large-scale commonsense knowledge bases
hinders practical Al applications. For example, robotic
task and motion planning would significantly benefit
from world knowledge and commonsense task descrip-
tions to be performed by a robot (Jiang et al. 2019). At

present, such knowledge is custom-built for each project.
Pressing problems such as identifying factually false infor-
mation (National Academies of Sciences, Engineering, and
Medicine 2023) require trusted knowledge; without it,
systems must resort to guesswork, and are forced into over-
reliance on human expertise to guide them. To ground
the narrative in this paper, the examples of “robotics”
and “identifying factually false information” are used
to illustrate how many applications suffer from a lack
of knowledge.

This raises important questions about Al infrastruc-
ture. What kind of knowledge resource is most needed
in the modern context? What categories of knowledge
should be included in such a resource? How should they
be represented? How should they be made accessible to
external users and applications? How can recent techno-
logical advances be harnessed to create such a knowledge
resource? How should such a resource be evaluated?

A workshop at the 2025 Conference for the Advance-
ment of Artificial Intelligence (AAAI) gathered over 50
researchers, including the authors of this paper, to explore
these questions (TIKA-2025: AAAI 2025 Workshop on
A Translational Institute for Knowledge Axiomatization
2025). This paper is an attempt to synthesize our discus-
sions and present a community view on the requirements
and approach for creating a new knowledge infrastructure.
We concluded that building an open engineering infras-
tructure for disseminating and using knowledge modules
in practical applications, by leveraging steady advances in
knowledge representation and reasoning over the last 40
years, is a promising path forward. This includes establish-
ing sets of conventions and social structures that should be
adopted by contributors.

We begin by envisioning the type of knowledge resource
required in the current context of Al and then exploring
aspects of creating it, including foundational knowledge,
domain-specific knowledge, automated reasoning, and
evaluation. We also review the current state of education in
knowledge representation and reasoning. We conclude by
presenting a community view on productive steps toward
the creation of this much-needed knowledge resource.

ENVISIONING A KNOWLEDGE
RESOURCE

We use the term knowledge resource to refer to a body of
curated knowledge that can be examined and verified by
humans. This knowledge could be formalized in any com-
putational framework, including ontologies (Noy 2001),
rules (Genesereth 2022), a constraint network (Dechter
2003), a probabilistic causal model (Pearl 1989), and even
in unambiguous natural language (Kowalski et al. 2023).
We envision the knowledge resource needed for Al by
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exploring four points: the type of problems that could best
be solved by it, the limits of current practice, what should
be done differently, and its likely beneficiaries.

Problems solvable by a knowledge resource

Data-driven learning is central to modern Al. But in some
cases, curated knowledge can be better. For example, in
basic arithmetic, people easily outcompete chatbots such
as ChatGPT because they learn how to add and multi-
ply numbers using rules rather than by looking at a large
number of examples (Cheng and Yu 2023).

Curated knowledge works better than data-driven learn-
ing in these scenarios: rules needed to solve the problem
are readily available, such as in systems of axioms for
qualitative spatial reasoning (Cohn and Renz 2008; Forbus
2019); in applications that require high levels of accuracy,
transparency, and reliability, such as income tax calcula-
tions; and in contexts in which clarity and precision are
crucial, such as in education.

It has been shown through the qualitative spatial reason-
ing benchmark, Room Space 100, that when the number
of objects in a scene (n) increases from 3 to 6, GPT-
4’s accuracy generally declines, for example, for n = 3,
GPT-4 has an accuracy of 0.55, and for n = 6, an accu-
racy of 0.15 (Li et al. 2024). It has also been found that
GPT-4 could solve some action-based complex puzzles—
performing better when generating Python code—but an
axiomatic reasoner using a proper action description lan-
guage solved all puzzles correctly (Ishay and Lee 2025). A
set of concrete examples where a knowledge resource can
supplement the knowledge in large language models has
been put out by Wolfram|Alpha (Stephen Wolfram 2023).
Examples include “distance between Chicago and Tokyo,”
“3 to the power 73,” “circumference of an ellipse with axes
4 and 127, etc.

A knowledge resource is necessary for us to develop
automated reasoning and intelligence that is more human-
like, capable of participating in formulation of formal
models from everyday inputs and interpreting their results
in real-world terms (model formulation and model inter-
pretation) (Forbus 2019). This requirement is supported
by a recent survey of AI community in which 61.8% of
survey participants estimated the minimal percentage of
symbolic AI techniques required for reaching human-level
reasoning to be at least 50% (Rossi 2025).

Limits of the current practice

Current knowledge resources such as Wikidata (Vran-
deci¢ and Krotzsch 2014) and Google’s knowledge graph

(Singhal 2012) capture relationships between real-world
entities such as people, places, organizations, and so
forth. ConceptNet captures relationships between con-
cepts (for example, a knife is used for cutting) (Speer et al.
2017), but the relationships are limited to triples that are
awkward or insufficiently expressive for capturing general-
purpose knowledge. LLMs encompass enormous amounts
of knowledge implicitly. This is effective for many appli-
cations, but their output lacks formal guarantees (Rossi
2025).

Applications such as biomedicine require a much higher
level of expressivity. For example, a drug may up-regulate
or down-regulate a gene depending on the context (Unni
et al. 2022). The knowledge in biomedicine is often below
the level of certainty of “established facts.” In clinical prac-
tice, a great deal of reasoning has to rely on assertions,
statistical associations, and observations. Existing reason-
ing engines are unable to accommodate varying levels of
certainty at the discretion of the practitioner.

Knowledge resources such as Cyc (Lenat 1995), Wol-
fram|Alpha (Wolfram Research 2024), Component
Library (Barker et al. 2001) or its variant CoreALM-
Lib (Inclezan 2016) attempt to bridge this gap. Cyc, for
example, targets formalization of complex knowledge
patterns across the full spectrum of the human world.
Because of the restricted intellectual property of Cyc and
Wolfram|Alpha, limited access to them is not conducive
to fostering an open-source community. OpenCyc, which
is the open-source version of Cyc, is useful for limited
purposes, as it provides access to only a small fraction of
the full knowledge base (Opencyc 4.0. 2014).

Demonstrations of inference gaps in LLMs for spa-
tial reasoning and action reasoning cited in the previous
section have been limited to academic settings. Establish-
ing that such inference gaps are critical for real-world
applications is an open research problem.

What should be different about a modern
knowledge resource?

A modern knowledge resource should provide a public-
utility-like infrastructure, becoming a go-to place for
trusted and verified knowledge and reasoning methods
across a variety of domains. Toward that end, it should
provide knowledge in such a way that its formal represen-
tation is paired with its provenance in multiple modalities,
including text, images, video, or other formats such as
graphs. As most pieces of knowledge are not universally
true, emphasis must be placed on the applicable context of
that knowledge.

The knowledge resource should advance the state-of-
the-art in how knowledge representation and reasoning
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are leveraged in engineered systems. As there are ongo-
ing initiatives assembling knowledge in data graphs (e.g.,
Wikidata uses RDF) and ontologies (e.g., Stanford’s Bio-
Portal uses Web Ontology Language or OWL), we are
envisioning that the proposed resource will use a language
more expressive than these existing efforts. Examples of
such languages include answer set programming (Lifschitz
2019) and its query-driven variants such as s(CASP) (Arias
et al. 2018), Rulelog/Ergo (Grosof et al. 2023) and other
extended well-founded logic programs, theorem proving
systems such as Lean (Moura and Ullrich 2021), con-
straint representation (Dechter 2003), methods to incor-
porate uncertainty (Koller and Friedman 2009) and causal
information (Pearl 1989, 2009).

The knowledge resource should foster a distributed
community, document use cases, and enable collaboration.
Instead of wasting time debating ideal knowledge repre-
sentations, the community’s focus should be on devel-
oping shared infrastructure and interoperability and on
maintaining consistency across representations whenever
possible. The resource should enable unanticipated link-
ages across diverse domains, for example, environmental
knowledge could be cross-linked to health knowledge,
population knowledge could be linked to economic factors,
and so forth.

Beneficiaries of a knowledge resource

The knowledge resource must exist in the modern ecosys-
tem of societal needs and challenges.

The knowledge resource will benefit AI engineers cre-
ating novel AI applications by weaving together different
off-the-shelf components. If knowledge modules are made
available in a way that engineers can use them as easily
as installing a new Python library, a range of Al applica-
tions will benefit, including those incorporating agentic
workflows and generative AI models.

The knowledge resource will also be an important new
form of data for training machine learning systems. Most
existing machine learning data sets are limited to facts.

The knowledge resource will benefit applications that
require world models. Examples of such applications
include those from the robotic planning, which must
bridge between sensor-level data and higher-level cogni-
tive world models, and the fact-checking systems that must
detect factually false information.

With the growth in biomedical literature, it is not
humanly possible for any one person to absorb and syn-
thesize everything that is being published. A knowledge
resource will enable superhuman knowledge aggrega-
tion and consistency maximization over complex domains

(such as molecular biology, medicine, or social pol-
icy) (Witbrock et al. 2015).

A knowledge resource will benefit knowledge represen-
tation and reasoning researchers by catalyzing research
and application in this area. UC Irvine’s library of
machine learning tasks and data sets (UCI Machine Learn-
ing Repository 2025), and the Hugging Face repository
of transformer models (Hugging Face 2025) have cat-
alyzed the research and adoption of machine learning
and natural language processing. A similar open-source
resource will benefit knowledge representation and rea-
soning researchers.

FORMALIZING FOUNDATIONAL
KNOWLEDGE

Foundational knowledge involves representing abstract
knowledge, such as knowledge about time, space, actions,
causality, and mid-level knowledge, such as the work-
ing of physical devices or tenets of social psychology,
qualitative physics, etc. (Davis and Marcus 2015). To
achieve maximum reusability and applicability, the knowl-
edge resource must leverage foundational knowledge.
We organize our discussion along four dimensions: eas-
ily available foundational knowledge, methodology for
collecting and using foundational knowledge, evaluating
its impact on the system behavior, and some long-term
challenges.

Easily available foundational knowledge

As there has been much work in representing foun-
dational knowledge, a knowledge resource can easily
bootstrap from this prior work. This includes qualita-
tive representations of time and space (Cohn and Renz
2008; Walega et al. 2015; Forbus 2019), representations of
events and actions (Gelfond 1998), formalizations of psy-
chology (Gordon 2017), and representations to capture con-
straints (Dechter 2003) and probablistic knowledge (Pearl
1989, 2009; Koller and Friedman 2009; Darwiche 2009).
OpenCyc’s ontology with integrated representations for
vision, space, and language is also available (Forbus 2025).

Methodology for collecting foundational
knowledge

The success of some past foundational knowledge rep-
resentation efforts can be attributed to the rare contri-
butions of ontological prodigies, for example, Pat Hayes,
Jerry Hobbs, and Ernest Davis. In contrast, a scalable
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approach requires community-curated resources that
leverage repeatable processes and well-defined engineer-
ing best practices for building foundational knowledge
infrastructure. To support this, a structured, multi-step
approach is desirable.

First, start with a broad theoretical understanding by
identifying key concepts in a domain. This process can
be aided with corpus analysis, for example, by identify-
ing sample texts in a domain for the occurrence of certain
concepts (Chaudhri et al. 2014).

Second, the dual goals of broad coverage and inferential
competency in foundational theories can be pursued via
the approach of successive formalization (Gordon 2017).
In this method, first-draft axioms are authored to sup-
port inference across the entire set of domain concepts
previously identified in the first step, then incrementally
formalized into competent logical theories through elab-
orations and refinements. The process of representation
is iterative in that the initial choices for predicates and
functions will likely evolve as the work progresses. It is
crucial to recognize both obvious and subtle issues and
to balance theoretical perspectives with practical problem-
solving. Through this iterative process, one can develop a
more refined understanding.

Finally, large language models can potentially con-
tribute to the creation of foundational knowledge. This is,
however, an area of research that is under-explored (Hit-
zler et al. 2024). An initial discussion on the use of LLMs
appears in section, Role of Large Language Models in
Knowledge Curation.

Evaluating foundational knowledge

We can evaluate foundational knowledge using both
intrinsic and extrinsic methods. Intrinsic evaluation
involves a theoretical analysis based on criteria such as
completeness, consistency, elaboration tolerance, redun-
dancy, etc. Extrinsic evaluation involves showing that the
use of foundational knowledge improves performance on
a suite of tasks. Extrinsic evaluation is more easily under-
stood by the stakeholders because of its direct connection
to specific problems. Foundational knowledge can also be
evaluated on the basis of whether it can inform the cre-
ation of nuanced and efficient test datasets. For example,
instead of creating a broad test data set in which all exam-
ples are similar, we can use the foundational knowledge
to identify the corner cases and then design the test data to
cover those corner cases, thus yielding a more compact test
set. Finally, an indirect measure of the usefulness of foun-
dational knowledge is in its adoption and reuse beyond its
original creators.

Long-term challenges in formalizing
foundational knowledge

There is no dearth of problems when it comes to for-
malizing foundational knowledge, but a few of them
stand out.

First, real-world problems tend to be multi-modal in
nature. For example, foundational knowledge will need to
handle text combined with images, audio, video, and text.
The foundational knowledge must address conceptual,
temporal, and spatial aspects taken together.

Second, there needs to be a better bridge between
the foundational knowledge and the abstract and vague
aspects of natural language. Different logical forms of verbs
and different senses of words can be typically understood
by humans through surrounding context, but the cur-
rent foundational theories offer no similar mechanisms.
For example, consider the sentences “the bottle contains
wine” and “the wine contains alcohol.” Foundational the-
ories must provide a way to disambiguate between such
different uses of “contains.”

Finally, there is still no easy way to translate across dif-
ferent representations of knowledge. For storing pictures,
for example, there are multiple formats such as JPEG,
PNG, etc. Translation tools exist for going across them,
although some of the translations can be lossy. In con-
trast, knowledge represented in one particular formalism
remains locked into that formalism, and it is not straight-
forward to exploit it in a system different from the one it
was originally developed in. Creating a standard for inter-
operability between formalisms, such as was done for the
less expressive language OWL, is a possible approach.

AUTOMATED REASONING

The word “reasoning” has been used to refer to a vari-
ety of computational processes (Rossi 2025). On one hand,
we have deductive or probabilistic reasoning in which typ-
ically there is a formal proof that relates a question to
its answer. On the other hand, we have inductive rea-
soning and analogical reasoning in which there may not
always exist a formal proof that relates a question to an
answer. In contrast to classical forms of deductive and
inductive reasoning, a major emphasis in logic and knowl-
edge representation and reasoning (KR) research has also
been on abductive reasoning, which is a cornerstone of
hypothesis formation and belief revision. Computer scien-
tists strive to associate formal properties and guarantees
for all of these reasoning processes. Examples of such
formal properties include soundness, completeness, and
tractability.
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For the purpose of the present paper, the term reason-
ing refers to the full spectrum of computational processes
that have been assigned this label in the literature. Given
this broad notion, we will organize our discussion along
the following dimensions: discovering axioms automati-
cally, modeling human reasoning, reasoning at scale, and
incorporating context into reasoning.

Discovering axioms

The problem of automatically discovering axioms has been
traditionally studied under the topic of inductive logic
programming (Muggleton 1991). Related efforts exist in
qualitative reasoning to learn new patterns based on ana-
logical generalization (McLure et al. 2010) or as default
rules (Wang and Gupta 2024). Modern practice, how-
ever, relies on a combination of manual and automatic
approaches. For example, while pursuing Bayesian causal
reasoning, it is expected that partial knowledge about the
world is provided by an external source. Likewise, induc-
tively acquiring knowledge about everyday embodied
human interactions (e.g., from multimodal data) requires
support for specialized domains such as space, time, and
motion (Suchan et al. 2016). To support reliable and
predictable decision support, large language models are
coupled with an external module that contains human
verifiable and explicit knowledge.

Open challenges in modeling human
reasoning

Human reasoning is often prone to error. For instance, peo-
ple frequently favor conclusions that are psychologically
appealing over those that are mathematically sound (Tver-
sky and Kahneman 1974). This raises concerns about
designing Al systems that directly mimic human reason-
ing, as they risk inheriting these flaws. A more pragmatic
objective is to develop Al systems that assist and augment
human reasoning, helping individuals arrive at more accu-
rate and reliable conclusions. In the following section, we
outline the key challenges in pursuing this goal.

First, it will be helpful to develop a taxonomy of distinct
kinds of human reasoning. Such a taxonomy will enable
better communication about which aspect of human rea-
soning is being modeled in a computational system. A
partial taxonomy is available in the existing literature
for reasoning tasks such as query answering, planning,
projection, diagnostics, etc.

Second, the human understanding of the world has a
symbolic structure, and Al programs must exploit this to
reason correctly, even though they might rely on raw data
for some of the processing. For example, when humans

engage in diagrammatic reasoning, they are able to sup-
plement their purely logical reasoning with diagrams and
sketches by exploiting the symbolic structure of the world.

Third, just as humans can resolve ambiguities and con-
flicts during a conversation, reasoning tools must be able to
do the same. Humans often make judgment calls because
of these ambiguities and conflicts. Reasoning tools should
be able to represent such judgment calls.

Fourth, the reasoning systems must be good at ignoring
irrelevant details. For example, in traditional procedural
programming a local variable has effect only in a certain
scope. Similarly, these reasoning processes should be able
to keep only a subset of facts in scope that are relevant for
the current problem.

Fifth, the reasoning tools should be such that complex
reasoning mechanisms that humans use, such as deduc-
tion, abduction, induction, counterfactual reasoning, etc.,
can be elegantly captured.

Finally, graphical models, be they deterministic or prob-
abilistic, enable causal and counterfactual reasoning that
are central to human reasoning. A primary challenge is
to acquire the causal model, even partially (namely the
causal graph). Once a partial causal model is available,
computing causal effect and counterfactual reasoning will
be facilitated and should be further explored.

Reasoning at scale

With the growing knowledge in science, it is humanly
impossible for any one person to effectively reason with
it all at once. Reasoning at the scale of all science is,
therefore, a practically useful challenge for Al systems.
Reasoning can be particularly effective in processing what
is already known about science and pinpointing gaps for
further research. For example, structural causal models
and constraint reasoning models can be especially effective
to support drug discovery and protein design.

Incorporating context into reasoning

Incorporating real-world constraints into reasoning is nec-
essary for it to work correctly. Cyc’s knowledge base
achieved this goal by organizing its knowledge into
microtheories into a hierarchical structure (Lenat 1995).
The same goal can be achieved through other methods.

We must not assume our knowledge to be a single mono-
lithic structure. Different knowledge modules that apply to
different contexts should be able to interoperate with each
other depending on the problem at hand.

Real-world reasoning scenarios themselves present con-
straints that the reasoning process should be able to
pick up. For example, designing an artifact requires
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understanding its operating conditions to ascertain what
materials are appropriate. Many of these issues can be
addressed by checking inconsistencies with the real-world
constraints, and through the development of specialized
but domain-independent solvers integrating aspects such
as space, motion, actions, events, and dynamics (Walega
et al. 2015; Suchan et al. 2016).

As science is a social process, reasoning methods must
gracefully integrate with existing workflows and take into
account the assumptions that the scientists are making.
For example, a recent experiment combining qualitative
process theory with a language model led to substantial
improvements in performance (Victor 2025).

Finally, as much of reasoning in science adopts a certain
point of view, choosing the correct viewpoint is crucial. As
an example, the shape of the Earth is viewed differently in
topography versus astronomy.

KNOWLEDGE CURATION USING
MANUAL METHODS, MACHINE
LEARNING AND LARGE LANGUAGE
MODELS

Knowledge curation is the process of gathering, extending,
and maintaining knowledge. Knowledge curation encom-
passes the full life cycle of specifying the requirements,
schema design, data cleaning and loading, debugging and
troubleshooting, and revising the knowledge.

Current practice on knowledge curation relies on teams
of knowledge engineers and domain experts. We believe
that this needs to change. Next, we address the role of
human oversight and automation in knowledge cura-
tion and popularizing knowledge curation among scien-
tific communities.

Role of human oversight in knowledge
curation

Human oversight is indispensable in any knowledge cura-
tion effort. We will illustrate this using three use cases:
knowledge curation to support web search, compliance to
emission standards, and development of machine learn-
ing solutions.

Accurate results for web searches require durable
semantics. For example, a movie can go through sev-
eral stages—initial publication of the story as a novel,
availability of screenplay, filming and production, box
office release, Netflix release, release in other languages,
and so forth. As this process unfolds over a number
of years, the search engine must correctly correlate dif-
ferent versions of the movie. At present, such correla-

tion requires human oversight through a careful schema
design.

To test the compliance of emission standards of automo-
biles, much sensor data is available, but most of it is not
relevant. Human oversight is needed to identify the rele-
vant aspects of sensor information that should be used for
checking compliance with standards.

Most machine learning approaches require data that
must be annotated by humans. Once the model is trained,
reinforcement learning with human feedback is a vital part
of model fine-tuning. Once a machine learning model is
deployed, human oversight is necessary to ensure that
the model performance does not drift as the input data
evolves.

In summary, human experts can provide initial domain
knowledge artifacts and define their intent to guide auto-
mated knowledge curation systems. This human-guided
initialization helps systems understand specific domain
contexts and requirements before any automation begins.
Even after the initial automated generation of logical struc-
tures, human reviewers must validate and refine generated
representations, ensuring accuracy and alignment (Akin-
faderin and Diallo 2025). The quality of automatically
curated knowledge ultimately depends on human exper-
tise to verify that automated outputs correctly represent the
intended domain knowledge.

Role of large language models in
knowledge curation

We assume that any step of the knowledge curation pro-
cess that could be automated should be automated. The
question we address is whether previously human labor-
intensive tasks can now be automated with the advent of
LLMs. LLMs can enable knowledge curation in at least
three ways: becoming a source of knowledge, aiding in
knowledge elicitation, and serving as knowledge curators.

LLMs capture an immense amount of knowledge
implicitly. We can interrogate them to explicitly emit their
knowledge on topics of interest for a given application.
Such explicit knowledge, either in a natural or a formal
language, can be used in multiple ways. It can be directly
built into the application under human oversight and used
by a reasoning process. It can also be used as a way to gain
insights into the domain of interest, which can speed up
the downstream design work of curators.

LLMs have enabled the construction of powerful chat-
bots. This capability could be leveraged toward cre-
ating a systematic methodology to facilitate interdisci-
plinary knowledge acquisition. LLM-based natural lan-
guage dialogs would need to be designed that support
a domain expert in articulating knowledge, which can
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be further curated by knowledge engineers or by the
LLM itself.

LLMs might be used as components in knowledge
curation interfaces between humans and large, complex
knowledge resources. As knowledge resources get big,
they become difficult to understand by casual users. LLMs
could provide an ability for a broader class of users
to add and contribute their knowledge to a knowledge
resource. In this scenario, an Al system using an LLM
is a useful mediator between a human and a complex
knowledge base.

In practice, frontier knowledge curation systems pow-
ered by LLMs have shown promise in analyzing docu-
ments, identifying key concepts, translating natural lan-
guage into formal representations, and combining them
into comprehensive knowledge models (Akinfaderin and
Diallo 2025). This automation significantly reduces the
manual effort traditionally required for knowledge for-
malization. These systems can auto-formalize in order to
validate claims, applying automated reasoning to detect
factual inaccuracies with minimal human intervention
and with explainability built-in. When validation fails,
advanced systems can generate suggestions showing alter-
native representations that would resolve inconsistencies,
effectively automating parts of the knowledge refinement
process that previously required extensive human exper-
tise.

We posit that an optimal approach to knowledge cura-
tion combines human expertise with automated systems
in a continuous feedback loop. In this paradigm, humans
provide initial knowledge artifacts and domain expertise,
while automation handles complex transformations into
formal structures that support verification (Akinfaderin
and Diallo 2025). Human-in-the-loop testing and vali-
dation exemplify this partnership: humans review and
pose test scenarios and evaluate presented outcomes,
while automated systems apply rigorous validation against
established, formalized knowledge bases. When incon-
sistencies are detected, these systems provide grounded
explanations and suggestions, which humans can then
use to refine knowledge representations or improve sys-
tem responses. This creates a continuous improvement
cycle where human oversight guides automation, and
automation enhances human capabilities.

Popularizing knowledge curation among
scientific communities

The knowledge curation enterprise must be popularized
among the scientific computing communities. Database
curation efforts already exist across multiple sciences, by
one count, there are 27 databases in materials science and

chemistry alone (Blaiszik 2025). But few scientific com-
munities are currently creating knowledge bases using
expressive knowledge representation languages. Though
some work leverages knowledge graphs (Segler and Waller
2017; Mrdjenovich et al. 2020), current approaches have
many limitations. The representation of relationships
between equations, variables, and broader theories that
we see in Wikidata is limited. For instance, in Wiki-
data, “Stoke’s Theorem” is a “generalization of” “Green’s
Theorem”—this captures some connections, but “gener-
alization of” carries no deeper meaning about the nature
of this generalization. Languages such as Lean provide
greater expressiveness for formalizing scientific knowl-
edge (Bobbin et al. 2024; Tooby-Smith 2025), but its
complexity makes it challenging to use by users outside
formal logic disciplines.

Nonetheless, projects like PhysLean aim “to create a
library of digitalized physics results in the theorem prover
Lean 4, in a way which is useful to the broad physics com-
munity” (Tooby-Smith 2025). We envision formalized ver-
sions of scientific texts like Feynman’s Lectures (Feynman
et al. 2013), where the scientific content and derivations
are structured, functional, and executable, with concepts
interlinked across the text. Achieving this requires popu-
larizing knowledge curation among scientific computing
communities so that more of these specialists come for-
ward to contribute.

MODERN EDUCATION ON KNOWLEDGE
REPRESENTATION

As highlighted in a recent report of a Dagstuhl semi-
nar (Delgrande et al. 2023), there has been a consistent
decline in the open academic positions in knowledge rep-
resentation and reasoning, as well as in the number of
students and researchers attracted to this field. There is
a concern that after the current faculty members teach-
ing knowledge representation retire, there is no plan to
replace them. In this section, we consider in more detail
the current practice for teaching knowledge representa-
tion, identify what is missing, and outline potential steps
for the future.

Current practice for teaching knowledge
representation

At most universities, especially in the United States,
knowledge representation is taught as part of either
an Al course or as a module on logic embedded in a
course on discrete mathematics. Some universities pro-
vide knowledge representation and reasoning courses as
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advanced electives, and there are several textbooks to sup-
port such courses (Brachman and Levesque 2004; Reiter
2001; Hendler et al. 2024). Currently used standard Al text-
books (Russell and Norvig 2021; Poole et al. 2010) have
several chapters on knowledge representation.

Several modern textbooks are available on logic pro-
gramming (Genesereth 2022; Lifschitz 2019; Gelfond
2014; Gebser et al. 2012; Darwiche 2009). Three of these
textbooks focus exclusively on answer set program-
ming (Lifschitz 2019; Gelfond 2014; Gebser et al. 2012).
They are used in courses taught by faculty members asso-
ciated with that field. Two of these books come with online
repositories containing slides and other teaching materi-
als (Kahl and Michael 2025; Potassco 2025). There is also
a textbook that focuses on teaching an audience without
a technical background how to think using computational
ideas Kowalski (2011), which has found home in some
philosophy courses. In addition, computer science depart-
ments at many universities offer courses in computational
logic that cover knowledge representation and reasoning.

Wright State University has created an educational
hub to teach people about knowledge graphs (Kastle
Lab 2025). Their curriculum is tailored to different audi-
ences ranging from students to senior executives. They are
also developing an industry certification for knowledge
graph professionals in cooperation with the Knowledge
Graphs Conference.

Northwestern University has a Knowledge Representa-
tion and Reasoning course that exposes students to logic,
Semantic Web technologies, and Cyc-style knowledge
bases. Students get hands-on experience with industrial-
scale knowledge bases with a heavy project-based compo-
nent.

Within the industry, especially at Cyc, teaching materi-
als tailored to their technology have been developed. This
teaching material typically assumes familiarity with logic.
and focuses on teaching practical skills for expressing a
given piece of knowledge formally.

Deficiencies in the current education
practice

As recent Al research has been dominated by approaches
based on machine learning, the coverage of knowledge
representation in standard textbooks (Russell and Norvig
2021); Poole et al. 2010) is out of date. There is also a
tendency to portray the topic in less than positive terms.
The current teaching practice on knowledge representa-
tion does not always succeed in conveying its importance
for building reliable computing systems. Most courses,
with a few exceptions, are limited to using small theo-
retical examples, without making adequate connections

to the real-world problems and actual impact. There is
inadequate integration of logic into other computer sci-
ence courses. For example, many students do not realize
that they could use propositional logic to debug their
if-then-else statements.

Another major missing piece in the current teaching
practice on knowledge representation is in cultivating an
ability to identify implicit and explicit knowledge and rules
of thumb that capture how the world works. In other
words, the current teaching fails to cultivate skills to con-
ceptually model a task domain and answer questions about
what that task/domain is. For example, given a short story
such as: “For sale: baby shoes, never worn,” one should
be able to infer the implicit possibility of the death of the
child and the tragedy of having to sell the shoes. Such skills
are cultivated in courses on philosophy and literature, but
similar skills are needed for computer science students to
be effective at knowledge engineering.

There is also a philosophical deficiency in the framing
of computer science curricula, as they primarily focus on
“how to build” versus “how to understand.” This encour-
ages students to rush toward coding solutions instead
of developing clear specifications. Clear specifications
require them to think formally about the requirements
and clarify any implicit information before engineering
a solution.

Steps to improve the teaching of
Knowledge Representation

Knowledge Representation and Reasoning community
should make the teaching materials easily available. Much
can be learned from a similar effort undertaken at the
University of California at Berkeley for a course on intro-
duction to AI (UC Berkeley 2025).

To make the teaching materials easy to use, the com-
munity should develop modules that can be easily picked
up and plugged into a variety of computing courses. The
modules should touch on various aspects of knowledge
representation and be accompanied by slides, worked-
out examples, sample exercises, sample projects, and
exam questions.

Consistent with these goals, the Prolog Education Group
(PEG) was founded in 2022, on the occasion of the
50th anniversary of the programming language Prolog, to
“teach logic, programming, sound reasoning, and AI” to
people of all ages and to develop and provide relevant
educational resources (Dahl 2025). The efforts of the PEG
group need to be expanded beyond teaching programming
to include topics of knowledge representation.

Modern platforms for instructors, such as Grade-
scope (Gradescope 2025) or GitHub Classroom (GitHub
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2025), support means for implementing automatic grading
utilities for programming exercises and projects. Provid-
ing such utilities is indispensable for easy adaptation of
teaching materials.

Similarly, providing user-friendly sandbox environ-
ments online for various modules will lower the barrier
for integrating material at different academic levels. For
example, while undergraduate students in a computer
science program might be asked to install a specific rea-
soner or solver to execute sample code, an online sandbox
environment supported by that reasoner could allow a
high school student to practice the same task.

New materials need to be developed to address “why
care” questions that illustrate the practical application of
knowledge representation in multiple fields. A repository
of real-world examples should be developed.

We should integrate the teaching of logic program-
ming into other computing courses. For example, within a
course on databases, logic programming should be taught
as the foundation of modern database management sys-
tems. Similarly, a course on programming languages can
incorporate material depicting answer set programming
and the algorithmic aspects of systems that support this
knowledge representation paradigm. Some universities,
for example, University of Nebraska, Omaha, and Univer-
sity of Texas at Dallas, already integrate logic programming
into other courses as suggested here.

The community should develop a knowledge represen-
tation body of knowledge similar to software engineering
body of knowledge (Bourque et al. 2014), against which
certifications could be granted. Teaching materials should
also underscore the importance of interoperability, demon-
strating how different knowledge representations and
reasoning systems can be integrated. A key component of
the teaching materials should be clear instructions and
examples of how to integrate the knowledge resources into
different applications.

Much of R&D in knowledge representation over the last
2-3 decades has focused on extending the expressiveness
of declarative logic programs to go beyond that of knowl-
edge graphs and relational databases. Al education should
include coverage of those key expressive features, includ-
ing answer set semantics versus well-founded semantics,
higher-order syntax, constraints, etc.

Al literacy courses are being developed across many
institutions to teach people about new developments. The
community should engage with such initiatives to ensure
that the role and value of knowledge representation are
adequately covered. It is especially important to include
an adequate history of different developments to avoid
reinvention of already-known concepts.

It would be valuable to introduce set theory and logic
in high schools (Chaudhri 2024). These students should

be taught different forms of reasoning, including deduc-
tion, abduction, and induction. The importance of logic
should be highlighted at an early age through games, puz-
zles, and debates. This will not only make students critical
thinkers but also alleviate any fear of logic courses in col-
lege. The Prolog Education Group has initiated efforts in
this direction (Gupta et al. 2024).

Most courses in computer science, except perhaps soft-
ware engineering, can be reframed as knowledge rep-
resentation courses by focusing on objects, their rela-
tionships, and the types of questions or tasks associated
with them. Even in software engineering, precise reason-
ing is critical for developing requirement specifications.
The key distinction between an introductory program-
ming course and a knowledge representation course lies
in the type of knowledge being represented, its intended
audience, and its impact. By embedding knowledge rep-
resentation throughout the curriculum, students could be
trained as both computer scientists and implicit knowl-
edge representation experts—without them explicitly real-
izing it. This approach reframes computer science not
just as an engineering discipline but also as a natural
science.

More broadly, universities can be encouraged to develop
an explicit categorization of courses relevant to knowledge
representation (perhaps in computer science, philosophy,
library science, etc.). Universities could be encouraged
to offer a minor concentration in knowledge represen-
tation. A consolidated resource that gathers different
courses and their relevance to knowledge representa-
tion would make it easier for universities to offer this
minor.

EVALUATING A KNOWLEDGE
RESOURCE

We can think of evaluating a knowledge resource in at
least three different ways. First, we can evaluate individual
modules, for example, evaluating foundational knowledge
or evaluating how effectively existing knowledge sets are
hosted and disseminated. Second, we can evaluate it in
terms of how effectively it fosters a community that helps
create it. Finally, we can evaluate a knowledge resource
as an enabler of Al and its role in the current frontier of
Al developments.

This section situates the knowledge resource evaluation
in the context of current developments in Al. From that
perspective, we will first consider the limitations of the
current practice of evaluations in Al and then consider a
few alternative ways to perform better evaluations through
expert interviews, virtual environments, and examination
of the working of the system.
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Limitations of the current evaluation
practice

Current evaluation practice in Al suffers from proxy
failure—when a measure becomes a target, it ceases
to be a good measure (John et al. 2024). With human
testing, there is an imperfect correlation between a bench-
mark and the underlying capability that the benchmark
is assumed to measure; with Al evaluation, this gap is
much wider. For example, a program doing well on a
multi-state bar exam is hardly suitable to practice law.
Furthermore, when benchmarks are the basis for evalu-
ating and comparing Al systems, those benchmarks are
subject to corruption pressures, such as training for the
test.

The Winograd Schema Challenge (Kocijan et al. 2023)
was designed to evaluate the ability to use common-
sense knowledge to disambiguate pronoun references.
The research community has developed programs that
do well on the test without incorporating the explicit
common sense that the test was originally meant to
test.

We next discuss different approaches to address
proxy failure.

Evaluation through expert interviews

Evaluation of an AI system by an expert user inter-
acting with it over just a few hours can be much
more insightful than the quantitative metrics reported by
benchmarks (Cohn and Hernandez-Orallo 2023). Unlike
the famed Turing test, the evaluator must know that
the subject of evaluation is a computer program and
should be given information about its architecture. If the
task requires domain expertise, the evaluation panel can
include both an AI expert and a human expert.

Evaluation in virtual environments

Virtual environments, simulated worlds, and games can be
effective in evaluating targeted aspects of reasoning. For
example, the angry birds competition (Renz et al. 2015)
has been effective at exploring reasoning about actions and
qualitative reasoning. Game environments and cognitive
robotics tasks can also constrain the allowed moves in ways
that can explicitly force any successful program to reason.
Recently proposed Gardner test is an example of such a
test that situates the rich tradition of General Game Play-
ing competitions in the context of modern generative Al
systems (Chaudhri 2025).

Evaluation of the functioning of the system

Benchmarks should test not just the output of the system
but the reasoning steps and individual pieces of knowl-
edge that were used in producing the result. Even though
it may be expensive to produce such test sets from scratch,
existing resources such as the Cyc knowledge base could
be leveraged to generate such tests. Such a resource would
significantly enhance the existing collection of problems
assembled by the common-sense reasoning community.

NEXT STEPS TOWARD CREATING A
KNOWLEDGE RESOURCE

The AAAI workshop (TIKA-2025: AAAI 2025 Workshop
on A Translational Institute for Knowledge Axiomatiza-
tion 2025) that is the basis of the present article is part of a
larger initiative (Shimizu and Chaudhri 2025) to formulate
and execute a research program to develop a new knowl-
edge resource for Al The present workshop is the first step
toward finding the requirements and building a commu-
nity. We have already planned three additional workshops
that are focused on use cases for the envisioned knowledge
resource. After the AAAI workshop, a subset of the partici-
pants formulated a project to develop a proof of concept for
the utility of the knowledge resource. With the wider com-
munity feedback and the results from the proof-of-concept
project, we will be in a better place to design the engi-
neering framework and formulate the associated research
problems that must be solved. For the rest of the section,
we discuss the recommendations from the workshop par-
ticipants, plan for the follow-up workshops, and describe
the proof-of-concept feasibility study.

Recommendations from the workshop
participants

The workshop participants agreed that a meticulously
curated knowledge resource, along with the neces-
sary tools and methodologies for its effective use, is
sorely needed.

For creating such a knowledge resource, much can be
learned from the Hugging Face repository (Hugging Face
2025). A similar dynamic platform promoting interop-
erability among various knowledge representations and
reasoning systems should be created. The portal should
be organized around specific tasks that can be performed
using the knowledge. It should provide a sandbox for try-
ing out different reasoning capabilities without requiring
any licenses or difficult installations. The portal should
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inspire contributions from students taking knowledge rep-
resentation courses worldwide. The problems addressed
by the portal should be of immediate relevance to a cross
section of the industry. It should be straightforward to
make use of any given package by simply doing “pip install
(package-name)”.

While some argued for intrinsic value of a knowl-
edge resource on its own, standalone knowledge resources
already exist, for example, Common Logic Ontology
Repository (Griininger 2012), Standard Upper Merged
Ontology (Niles and Pease 2001), and Basic Formal Ontolo-
gies (Arp et al. 2015). These prior existing knowledge
resources differ from the Hugging Face model and the
new knowledge resource envisioned here in that they do
not target any specific end-user task. In addition to focus-
ing on specific tasks, the success of Hugging Face can
be attributed to providing interoperability between a few
prevalent deep learning models, creating a unified API
that simplifies training across different model architec-
tures and tasks, and providing a hub for model training
and discovery.

The knowledge resource should be positioned as a
source of trusted and verifiable knowledge. LLMs should
be explored as an initial use case needing a trusted knowl-
edge resource. In addition to LLMs, a few other use
cases must be identified. These use cases must span the
breadth of knowledge levels/certainty, as well as mission
criticality.

To avoid some of the barriers that have prevented
Cyc from being widely incorporated in contemporary Al
systems across academia and industry, there was an over-
whelming consensus that the knowledge resource needs to
be open-source and released under a permissive license.

The community also agreed on the need for effective
teaching materials in the form of modules that can be
easily adapted by others. More details have been dis-
cussed in the section on Steps to Improve the Teaching of
Knowledge Representation.

Acknowledging the importance of evaluation and val-
idation, our discussion highlighted the need for test
sets and benchmarks, potentially developed in collabora-
tion with existing initiatives such as Cyc and MLCom-
mons (MLCommons 2025). This would ensure the reli-
ability and accuracy of the knowledge resources while
also mitigating the risk of redundant or inaccurate data
proliferation. The creation of public test sets, useful for
evaluating the performance of different systems, would be
a valuable teaching tool.

A strong consensus emerged that the resource should be
created and/or managed by a nonprofit foundation, allow-
ing for membership from both academic and commercial
entities. This structure would ensure sustainability and

broad participation. To kickstart the initiative, a virtual
institute was suggested as an initial phase.

Follow on workshops

We are planning three follow-on workshops that are
focused on specific use cases that can benefit from a
knowledge resource: education, supply chain, and com-
putational law. These topics were chosen because there
exists prior work to justify further exploration. We briefly
describe each of these workshops.

The workshop on education is aimed at identifying prob-
lems that cannot be solved using LLMs alone and require
knowledge representation to be created. Examples of such
problems include skill graphs, precision knowledge trac-
ing, and grounding Al in verifiable knowledge. The goal
of this workshop is to formulate a large community-
driven knowledge graph construction project that would
benefit education.

The workshop on supply chain is aimed at addressing
critical vulnerabilities in the global supply chain exposed
by the pandemic and infrastructure failures. We will
explore several potential supply chain domains (for exam-
ple, minerals, plastics, water supply, etc.) with an eye
toward identifying a domain where the data is easily avail-
able and where a global view of the supply chain could be
enabled by creating a rich semantic model.

The workshop on computational law is aimed at creat-
ing a community of users for a national library of laws that
are represented as computer code. Preliminary work exists
in codifying local building codes, suggesting that scaling it
to a national level will address significant inefficiency in
regulatory compliance landscape.

Proof of concept for a knowledge resource

To adapt the Hugging Face model to knowledge modules,
the major roadblock is not the design of a portal itself but
to identify concrete problems and use cases where the use
of a knowledge resource makes a significant difference. Dr.
Alessandro Oltramari, the president of the Carnegie Bosch
Institute, who attended the workshop, came forward with
a set of use cases from Bosch that could be used to estab-
lish the value of a knowledge resource. Consequently, Dr.
Chaudhri and Prof. Shimizu worked with Bosch to define
three use cases: inference gaps in LLMs, robotic skill learn-
ing, and root cause analysis. We briefly explain each of
these use cases.

Through a qualitative reasoning benchmark, Room
Space 100, it has been shown that the accuracy of GPT-4
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declines from 0.55 to 0.15 when the number of objects in a
scene increases from 3 to 6 (Li et al. 2024). In contrast, a
qualitative spatial reasoner for the same task is complete
and correct regardless of the number of objects. We will
evaluate this claim in the context of a robotic planning
use case provided by Bosch. Bosch currently uses LLMs for
both high-level and low-level planning (Saxena et al. 2024).
In our experiment, we will replace the LLM used by high-
level planner with a symbolic planner that uses a spatial
reasoner and compare their performance.

Robotic skill learning can benefit by leveraging a knowl-
edge resource. Envision a scenario in which a robot learns
to Pick up a hard object, Orient it for insertion, and then
finally performs the Insert. In the current approach, a robot
would learn this process as one unit. By using a knowl-
edge resource, it could map the process to individual steps
such as Pick, Orient, and so forth, which are more gen-
eralizable. For example, if a robot has learned to pick up
a hard object while doing spark plug insertion, it could
use the same skill while moving a hard object from one
place to another. Starting from the skill library provided
by Bosch (Saxena et al. 2024), we will evaluate how many
of these could be mapped to existing resources to enable
generalizable robotic skill learning.

Root cause analysis in manufacturing involves identify-
ing the cause of a defect. For example, temperature spike
could be caused by machine vibration, which could be
caused by an alignment error. In the current approach, the
root cause analysis primarily relies on a machine learning
algorithm that processes sensor data. If some of the causes
are modeled in structured knowledge (Jaimini et al. 2023),
root cause analysis need not rely solely only on sensor data.
We will evaluate how the use of a knowledge resource
improves the root cause prediction accuracy.

If the results from any of the above evaluations are
positive, that will serve as a template to replicate simi-
lar application of knowledge resources to other use cases.
Such use cases can also be the starting point for the
envisioned open engineering framework.

CONCLUSION

It is natural to question the value of a curated knowl-
edge resource in the context of modern AI. The world is
captivated by ever-larger generative Al models that pro-
duce fluent text, lifelike images, and powerful predictions.
These systems dominate the headlines, attract billions in
investment, and fuel the race for Al supremacy. No matter
how impressive, the generative Al systems have danger-
ous flaws: they reflect the data they were trained on, lack
formal guarantees, and will always have inference gaps.
They offer performance without understanding, and flu-

ency without truth. And yet, the incentives of today’s
Al ecosystem—benchmarks, funding, and hype—reward
more scale, not more sense.

That is why the kinds of knowledge resources pioneered
in the classical Al must return. Knowledge resources built
on logic, rules, and meaning offer exactly what generative
Al lacks: transparency, justification, and formal guaran-
tees. They let us encode shared human knowledge and
values, instead of outsourcing everything to inscrutable
models. Alone, symbolic Al once faltered. But in partner-
ship with deep learning, it can give us systems that are both
powerful and trustworthy.

The research culture of deep learning has much to
teach us. Abundant tools, open-source frameworks, and
shared data sets that are the staple of deep learn-
ing research make it easy for newcomers to experi-
ment. Symbolic AT knowledge resources lack comparable
support and require painstaking modeling and domain
expertise. This creates barriers to their adoption by Al
engineers.

Our hope through the present workshop and the follow-
on activities, is to re-energize the knowledge represen-
tation and reasoning community in creating knowledge
resources that parallel the deep learning models by adapt-
ing the engineering practices exemplified by Hugging
Face. We must, however, start small and demonstrate the
value and effectiveness of knowledge resources within
the modern context of generative Al systems. We have
embarked on that journey by identifying industry use cases
where LLMs have inference gaps, machine learning is
done on very specific skills, and causal reasoning is drown-
ing in data. We will evaluate the usefulness of existing
knowledge resources in these three contexts and proto-
type how the knowledge artifacts can be disseminated for
widespread use. We hope that this model of working from
use cases to delivering easily reusable engineering prod-
ucts will inspire others in the knowledge representation
and reasoning community to undertake similar efforts in
their own spheres.

Much work needs to be done to define actionable
research program. Based on the results of the proof-of-
concept study mentioned in the previous section, we
hope to define research projects in all aspects of creat-
ing the knowledge resource: methodologies for creating
both foundational and domain-specific knowledge, effec-
tive reasoning techniques that scale and take context into
account, and translational techniques that can automati-
cally translate a reasoning task framed in one formalism
into another formalism. Enabling seamless distributed
development, especially by domain experts, is essential
for fostering an effective community. Last but not least,
we must pay attention to considering how to involve con-
tributors from diverse geographic, linguistic, cultural, and
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institutional backgrounds, including underrepresented or
low-resource communities.

Al research has always moved in cycles, with certain
paradigms rising and falling in prominence. The remark-
able progress we now see in deep learning would not have
been possible without the persistence of researchers like
Geoffrey Hinton, who championed neural networks long
before they were in vogue. Just as neural networks have
proven powerful for modeling aspects of human percep-
tion and cognition, curated knowledge remains essential
for capturing structured, declarative understanding—the
kind that underpins reasoning, learning, and communi-
cation. Although knowledge curation has receded from
the forefront of mainstream Al, its value has not dimin-
ished. By investing sustained effort into reintegrating
curated knowledge into the Al toolkit, we can unlock new
forms of robustness, interpretability, and societal impact—
and, once again, broaden the horizons of what AI can
achieve.
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